
Using Structured Knowledge Representation

for Context-Sensitive Probabilistic Modeling

Nikita A. Sakhanenko a,b,∗ George F. Luger b

aInstitute for Systems Biology, Seattle, WA 98103 USA

bComputer Science Department, University of New Mexico,

Albuquerque, NM 87131 USA

Abstract

We propose a context-sensitive probabilistic modeling system (COSMOS) that rea-
sons about a complex, dynamic environment through a series of applications of
smaller, knowledge-focused models representing contextually relevant information.
COSMOS uses a failure-driven architecture to determine whether a context is sup-
ported, and consequently whether the current model remains applicable. The in-
dividual models are specified through sets of structured, hierarchically organized
probabilistic logic statements using transfer functions that are then mapped into a
representation supporting stochastic inferencing. We demonstrate COSMOS using
data from a mechanical pump system.

Key words: Structured knowledge representation, Context-sensitive reasoning,
Probabilistic modeling

1 Introduction

We propose and demonstrate a system (COSMOS) for context-sensitive prob-
abilistic modeling that accounts for a changing environment while attempting
to diagnose a dynamical system. Similar to a divide-and-conquer approach,
COSMOS decomposes a diagnostic problem into a set of stable, invariant con-
texts where the computational complexity of the problem is radically reduced.

∗ Corresponding author.
Email addresses: nsakhanenko@systemsbiology.org (Nikita A. Sakhanenko),

luger@cs.unm.edu (George F. Luger).

A first-order, Turing-complete, stochastic modeling language Generalized Loopy
Logic [26] supports COSMOS. Logic-based systems, in particular those utiliz-
ing first-order logic, are very powerful in representing relations between differ-
ent entities. Probabilistic systems, especially probabilistic graphical models,
are successful in capturing the uncertainty in data and performing stochas-
tic reasoning. Combining logic-based and probabilistic reasoning allows for
more efficient modeling, applicable to complex and changing tasks, and is an
important component of COSMOS.

Dynamic systems are often assumed to be stationary and invariant over an
entire training data set. When reasoning about a system whose dynamics
change according to states of the external environment with little a priori
knowledge, then almost every possible aspect of the world must be explicitly
represented in the training data and captured by the learning algorithm in
order to avoid overlooking hidden relationships. One implication of this is
that when a knowledge base changes, the learned general model is discarded
as no longer true and a new model must be constructed from scratch.

COSMOS addresses this issue by contextualization, where a small, knowledge-
focused model is used to represent the currently active context. The idea of
considering stable, invariant regions (contexts) in a data stream is similar to
the divide-and-conquer approach: rather than using a large model to represent
the entire set of data, we use smaller models to represent single contexts. This
reduces model complexity and requires a smaller amount of training data. One
of the main reasons for using context-sensitive modeling is that large models
are often more susceptible to overfitting data [17]. Restricting the complexity
of the model can address this overfitting dilemma (Occam’s razor).

To detect whether we are in a context transition, COSMOS uses a failure-
driven architecture where model failure is the key concept. Model failure, when
the model fits new data poorly, indicates a context transition, during which we
store the model representing the previous context in a library of models. As a
result, depending on context changes, we can swap a currently active model
with a model from the library that represents the new context. In order to
reduce the search for model substitution, we structure this library according
to domain knowledge.

Even though interfaces are an explicit part of most design models, such as
electrical schemas, standard probabilistic graphical models typically do not
include explicitly defined interfaces. Since real-time diagnostic applications
can include a very large number of interrelated entities, initial specification of
a probabilistic graphical model is a very challenging task that is simply left to
a domain expert. Structured knowledge representation is needed in order to
specify the initial models and map these into probabilistic graphical models.
We use transfer functions for this task.

2

In COSMOS, the domain expert provides a set of prior models correspond-
ing to sets of identified contexts. Since it is difficult to specify probabilistic
graphical models for various contexts in a real-time application with multi-
ple interconnected relations, we use transfer-function diagrams that can be
seen as deterministic templates providing prior information about contextual
models. Transfer-function diagrams provide a clear, hierarchically organized,
structured design and are well suited for mapping into our stochastic logic
implementation.

We demonstrate these examples using a pump system, schematically depicted
in figure 1. A water pump draws liquid from a reservoir through a pipe (pipe1)

Fig. 1. The diagram representing the simplified pump system.

and ejects the liquid into another pipe (pipe4). The pump is driven by an elec-
trical motor. The liquid, that can contain contaminants, is cleared by a filter
and deposited back into the reservoir. The flow control modulates the liquid
flow. In order to diagnose the system, we install a number of sensors that
detect current pressure, flow, and the emission state of the liquid at differ-
ent locations. There are a number of important diagnostic tasks, including
detecting when the filter gets clogged, which can lead to cavitation of the
system. COSMOS and the transfer-function representation of these parame-
ters is presented in Section 3. This section also describes other components
of COSMOS including the model failure and recovery mechanism. A set of
experiments testing COSMOS on data from the pump system are presented
in Section 4. Next, we review related research.

2 Related work

Logic-based representation for stochastic modeling has been proposed by a
number of researchers. Poole [28] develops an approximate inference algo-
rithm for a Turing complete probabilistic logic language where uncertainty is
expressed through sets of mutually exclusive predicates annotated with proba-
bilities. To apply Poole’s logic the user has to maintain the correct normaliza-
tion of the probabilistic content, which can be difficult even when expressing
simple Bayesian networks (BNs).

Haddawy [8] defined a first-order probabilistic logic used to specify a class of
Bayesian networks as a knowledge base. Haddawy proposed a provably correct
BN generation algorithm that was later adapted by Ngo and Haddawy [19,20]

3

to focus the knowledge base on the relevant information. In particular, they
used logic expressions as contextual constraints for indexing the probabilistic
information to reduce the size of the modeling network.

Friedman et al. [4] and, later, Getoor et al. [5] proposed probabilistic relational
models (PRMs) that specify a probability model on classes of objects and use
maximum likelihood parameter estimation for parameter learning, while struc-
ture learning is done using heuristic search of the best scores in a hypothesis
space (which is similar to the notion of an appropriate neighborhood [10]).

Bayesian logic programs (BLPs) offer another knowledge-based model con-
struction appoach and were proposed by Kersting and DeRaedt [11]. This
framework generates Bayesian networks specific for given queries using a set
of first-order Prolog-like rules with uncertainty parameters. BLPs utilize prob-
abilistic learning from interpretations of inductive logic programming [12].

Richardson and Domingos [29] propose Markov logic networks (MLNs), a
probabilistic approach based on general first-order logic. This approach con-
verts logic sentences into a conjunctive normal form (CNF) which is then
mapped onto Markov random fields for inference. MLNs utilize a complete

mapping from first-order predicate calculus with function symbols to proba-
bility distributions.

In this paper, we choose a different direction than Richardson and Domin-
gos [29] because of our requirement for domain-dependent and query-dependent
model construction. Even though mapping from the CNF sentences of MLNs
to Markov fields is straightforward, the practical advantages over Horn-clause-
based representations are not obvious. We suggest that Horn clauses provide
expressive power by preserving the generality and in the same time supporting
embedding various heuristics. We use a stochastic language, called General-
ized Loopy Logic (GLL), described in detail in the next section, that combines
Horn clauses with BNs similarly to BLPs [11], however GLL maps its sentences
into Markov random fields as in MLNs. Our GLL approach can also be applied
efficiently to dynamic problems that have strict time and memory constraints.

One of the first attempts to use contextual information in probabilistic mod-
eling was proposed by Haddawy and Ngo [8,19]. Their logic-based stochastic
modeling approach utilized explicit contextual information as a way to reduce
the size of a model. Here a context is defined as a logic sentence associated with
general definitions from a knowledge base. Only relevant definitions, indicated
by a matching context, are selected by a knowledge-based model construction
algorithm.

Sanscartier and Neufeld [30] proposed another approach that uses context to
refine a probabilistic model. They use context-specific independence to make a
causal Bayesian network smaller and more accurate. Sanscartier and Neufeld

4

note that a causal link between two variables can be established only when
certain conditional independences are missing for all values of a variable in a
distribution. Model reduction is then possible by detecting conditional inde-
pendences that hold for a subset of the values.

Exploiting the notion of context defined through conditional independencies
to improve the performance of a model was also investigated by Turney [36].
In the area of supervised machine learning, Turney studies how features from
a multidimensional feature space can be partitioned into different categories
using context.

Silver and Poirier [31] applied context to adapt multiple-task neural networks
for learning. They replaced multiple outputs of a neural network with a single
one while adding a set of inputs that identify an example context. These con-
textual inputs are task identifiers that associate training examples with partic-
ular tasks. Silver and Poirier [31] argue that the contextual inputs represent
more specific domain information that supports indexing over a continuous
domain of tasks.

Our research is motivated by [8,19], though their contextual mechanism is too
simple and discrete for our task: it cannot reflect all the complexity of the
internal structures of data. In this paper, we provide a complete specification
of context as truth assignments to a specific set of known variables. The choice
of variables is similar to the approach by Pearl and Halpern [24,9] that uses
exogenous variables (variables that are not in the model) to identify a back-
ground of the actual cause of an event. This is different from the notion of a
situation index in the situation calculus [1] capturing variables that we may
possibly be unaware of to describe a situation.

The notion of context has long been an important part of human understand-
ing. In order to interpret a text, the relevant social environment must be
taken into account as it influences the author of the discourse. Van Dijk [37]
argues that the relevant features of communicative situations influence lan-
guage only through participants’ subjective views of situations. These views
are represented and constantly updated in mental models of the speakers, so-
called context models. Van Dijk demonstrates that context models control and
explain many aspects of interactions that cannot be accounted for otherwise.

In developmental psychology, Gopnik et al. [6] emphasize that a new model
based on Bayesian networks and utilizing the principles of dynamic program-
ming can support research on learning in children. Granott et al. [7] attempt
to give another psychological perspective on human learning, that of bridging,
which is an attractor that draws development of a system toward more ad-
vanced and more stable levels. Granott et al. [7] argue that bridging is a tran-
sition mechanism that people use while learning. The failure-driven approach

5

presented in this paper is closely related to these approaches for describing
human developmental learning.

Although probabilistic logic-based systems provide a useful means of utilizing
represented knowledge, the task of representing large knowledge-based mod-
els with complex interdependencies in first-order rules can be a daunting task.
Srinivas [33] acknowledges that constructing Bayesian networks for complex
models by hand is very difficult. In COSMOS we utilize transfer function

mappings that extend the functional schematics described by Srinivas [33].
The mapping of intermediate representations into Generalized Loopy Logic
supports dynamic system modeling, including recursive and time-dependent
models, as well as other advantages of GLL over standard probabilistic graph-
ical models.

Koller et al. [13] propose object-oriented Bayesian networks (OOBNs) that
allow complex domains to be described in terms of inter-related objects. The
structural information encoded by an OOBN and the encapsulation of vari-
ables within an object allows the reuse of model fragments in different contexts.
Similar object-oriented approaches focus on the modularization of the knowl-
edge representation [14,22,15]. Similar to our use of transfer functions, they
show how large networks, normally impractical to construct as a whole, can
be woven together from smaller, more coherent and manageable components.

Although, there are many other researchers working on the problems of con-
textual sensitivity and failure-driven modeling, we have referenced those that
have been most influential in developing COSMOS. Other research includes
the lifelong learning framework of Thrun [35] and teleo-reactive programs of
Nilsson [21].

3 The COSMOS system

In this section we introduce COSMOS, a context-sensitive probabilistic mod-
eling system. This system utilizes generalized loopy logic (Section 3.1) as a
logic-base probabilistic inferencing engine. COSMOS (Sections 3.3 and 3.4)
addresses a modeling problem by partitioning the task into a collection of con-
texts represented by small, knowledge-focused stochastic models and by choos-
ing appropriate models depending on the current situation. Transfer functions,
a hierarchical, structurally organized representation, is used to specify tem-
plates for the stochastic models (Section 3.2).

6

3.1 Generalized Loopy Logic

Generalized Loopy Logic (GLL) is an extension of a modeling language devel-
oped by Pless [26]. GLL is a logic-based, first-order, Turing-complete stochastic
language that combines deterministic and probabilistic reasoning approaches
to improve expressive and reasoning power. While the expressive power of tra-
ditional Bayesian networks is constrained to finite domains as in the proposi-
tional logic, the Generalized Loopy Logic language captures general classes of
events and relationships. To represent potentially infinite classes of stochas-
tic relationships such as a Markov process this first-order language combines
Horn-clause logic with Bayesian networks. Consequently, knowledge is repre-
sented as a set of rules describing the conditional dependences among random
variables with stochastic distributions attached to facts and rules.

Specifically, a general GLL sentence is of the form

head|body1, . . ., bodyk = [p1, . . ., pl],

where body1, . . ., bodyk are the variables of the system on which a variable
head is conditionally dependent, l = arity(head) ×

∏k
i=1 arity(bodyi) with

arity(x) denoting a number of states of a variable x. The probabilities are
indexed over the states of head and body1, . . ., bodyk. For instance, if x is a
predicate valued over {low, avg, hi} and y is a boolean predicate, then P (x|y)
is defined by the sentence

x|y = [[0.5, 0.1, 0.4],[0.3, 0.6, 0.1]].

In GLL terms can be full predicates with structure and contain PROLOG
style variables. For instance, the sentence b(N) = [0.5,0.5] defines that b

is universally equally probable to take on either of two values. The domain
of terms is specified using set notation: b <- {hi, low} indicates that b is
either hi or low.

The GLL program presented next defines a hidden Markov model (HMM):

state <- {true, false}

emit <- {hi, low}

state(N+1)|state(N)=[[0.9,0.1],[0.01,0.99]]

emit(N)|state(N)=Emit

emit(0) = hi

emit(1) = low

emit(2) = hi

There are two states, true and false. The system can start with either one
and at each time step either stay in the same state or transition to the other

7

state. Note that if the system is in the state true, then there is a 90% chance
that the system will stay in that state at the next time step; however, if the
system is in the state false, there is only a 1% chance the system will stay
in that state. In both states the system can output either hi or low values.

Further, we can describe the probability of a system that produces an output
as a learnable distribution (Emit). This means that the program specifications
are conditioned by the data seen at a particular time. Note also how the
recursive rule of the GLL example captures the Markov process across the
states N of the HMM.

The learnable distribution Emit indicates that the conditional probability gov-
erning the system’s output is to be fitted. The data for learning is obtained
from GLL rules and facts (observations). The last three sentences in the pro-
gram presented earlier are the GLL facts. Note that in each fact the variable
N is bound. The Generalized Loopy Logic language uses the message-passing
inference algorithm known as loopy belief propagation [23] (hence the name
“Loopy”).

GLL can also use other iterative inferencing schemes such as generalized belief

propagation and Markov chain Monte-Carlo [16]. In order to perform infer-
ence, GLL converts its first-order program to a Markov random field. Figure 2
demonstrates how the GLL program just presented is converted into a bipar-
tite Markov field. During mapping into a Markov field, each ground instance
of a GLL term corresponds to a variable node in the Markov field (ellipse),
and each GLL rule with a probability distribution attached to it corresponds
to a cluster node (rectangle). If more than one rule unifies with the rule head,
then the variable node is connected to more than one cluster node, which re-
sults in a product distribution. One of the important features of GLL is its
support of dynamic modeling. In GLL, dynamic models can be specified by
using recursion and controlling the depth of unfolding of recursive rules when
mapping into a Markov random field.

Fig. 2. A Markov random field produced by unrolling the GLL program specifying
a hidden Markov model.

During loopy belief propagation nodes of a Markov field exchange messages
that are initially set randomly. On update, a message from a cluster node C to

8

a variable node V is the product of the conditional probability table at C and
all the messages to C except the message from V . In the other direction, the
message from a variable node V to a cluster node C is the normalized product
of all the messages to V except the message from C. Iterating this process until
convergence has been found to be effective for stochastic inference [18] and has
been proved to converge to optimal values for acyclic directed graphs [23].

A major feature of GLL is its natural support for parameter learning by assign-
ing of learnable distributions to rules of the GLL program. These parameters
are estimated using a variant of the Expectation Maximization (EM) algo-
rithm [3] implemented through the message passing of loopy belief propaga-
tion. The EM algorithm estimates learning parameters iteratively, alternating
between an expectation (E) step, computing the current estimate of the pa-
rameters, and a maximization (M) step, re-estimating these parameters to
maximize their likelihood.

GLL utilizes the EM algorithm by adding learnable nodes to the Markov
random field representation, the triangular node of figure 2. Each instance of
the cluster node to be fitted is connected to the learnable node. By applying
loopy belief propagation on the cluster and variable nodes of a Markov field,
GLL computes the messages to the learnable nodes. Iterating the propagation
algorithm until convergence produces an approximation of the expected values
and therefore is equivalent to the E step of the EM algorithm. Averaging
over all the cluster nodes connected to the learnable node yields a maximum
likelihood estimate of the parameters of the learnable node, which is equivalent
to the M step of EM. Therefore, inferencing over the variable and cluster
nodes followed by updating the learnable nodes and iterating this process is
equivalent to the full EM algorithm.

The representation offered by GLL, predicate logic, is flat; in building models
we use structured hierarchical interface to easily specify models for COSMOS.
In the next section, we demonstrate the transfer-function diagrams that pro-
vide the intermediate representation and map model’s components into GLL.

3.2 Structured representations: transfer-function diagrams

To perform diagnostic tasks in dynamic environments such as the pump sys-
tem, knowledge about the environment supplied by the domain expert must
be transformed into a stochastic model. Since knowledge engineering directly
in terms of probabilistic models is challenging, an intermediate design model
capturing the relationships of the system is needed. Transfer-function dia-

grams define explicit interfaces to the probabilistic models and are naturally
mapped into the components of the generalized loopy logic (GLL) language

9

used to describe stochastic models.

Trasfer-function diagrams provide an intuitive way of engineering design, mak-
ing the task of system modeling easier. This representation keeps the design
process tractable by using an object-oriented approach. The modularity of the
input representation supports clarity of design and reusability of its compo-
nents. The transfer-function diagrams extend the method and set of algorithms
originally proposed by Srinivas for mapping device schematics into probabilis-
tic models for diagnosis and repair [33].

A transfer-function diagram is a set of interconnected components. A compo-
nent receives a set of inputs (I) and emits a set of outputs (O) constrained by
a set of internal state variables (S). Note that all the variables are assumed to
be discrete. For each output of the component there is a function computing
the output that takes a subset of inputs and a subset of internal states as its
arguments: ∀O ∈ O, ∃F , ∃{I1, . . . , Il} ⊆ I, ∃{S1, . . . , Sm} ⊆ S such that

F : I1 × . . . × Il × S1 × . . . × Sm → O.

Figure 3 illustrates a component (a pipe) from the transfer-function diagrams
representing components of the pump system. The boxes inside of the com-
ponent correspond to functions, whereas ellipses correspond to component’s
internal states. We offer three justifications for using transfer function dia-

Fig. 3. A component from the transfer function diagram representing a pipe of the
pump system.

grams to address the representational issues in building stochastic models.

Object-oriented abstraction. Using an object-oriented methodology allows tran-
sfer-function diagrams to have components with multiple outputs, an exten-
sion to the original functional schematics [33]. Each component is treated as an
object with multiple attributes such as the amount of contaminant in the pipe
and the pressure for the component (figure 3). Each attribute is modeled by an
appropriate function, e.g., the emission condition in the pipe is represented by
a function with arguments emission, pressure, and the current internal state
of the pipe, which, in turn, can be modeled by another transfer-function di-

10

agram. This object-oriented representation accepts multiple functions while
preserving representational clarity.

There are several other advantages of the object-oriented representation of
transfer-function diagrams. By specifying components of the diagram via ob-
jects we allow model fragments to be reused. Moreover, we can replicate the
inheritance mechanism of object-oriented programming by combining some at-
tributes of different objects into other objects. After mapping into a probabilis-
tic model, the stochastic parameters of the inherited attributes can be learned
simultaneously by taking advantage of GLL’s parameter learning mechanism
(section 3.1).

Variable typing. We distinguish two types of model variables: operating and
indicating. Operating variables participate in the operation of the system (e.g.,
engine speed, flow rate, etc.) whereas indicating variables do not directly af-
fect the functioning of the system (e.g., vibration near the motor). Typically,
AI diagnostic representations [33] focus only on the operational behavior of
the system and do not use indicating variables. By using indicating variables,
transfer-function diagrams support assigning probability distributions that de-
scribe the hidden operating states of the components that are essential for
diagnosis.

Indicator parameters are also categorized into two types: direct (sensory) and
indirect (functional). A physical sensor monitoring some aspects of the envi-
ronment, such as vibration near the motor in the pump system, is directly
represented by a sensory indicator parameter. In oreder to monitor some in-
ternal states of a subsystem for which no sensors are available, we use an
indirect (functional) indicator parameter modeled as a function of inputs and
outputs. The output leak (figure 3), which is not used as an input to any
other component, is a functional indicator parameter computed as a ratio be-
tween the input and the output of the pipe. Note that a functional indicator
parameter can be viewed as a virtual sensor that indicates whether a specific
function within the subsystem is consistent with the data. This is simpler than
factoring this information directly into a stochastic model.

Support of temporal relations. As seen in the pump example earlier, a knowl-
edge engineer must represent temporal relations between components as well
as within components to diagnose such situations as cavitation in the system.

In order to explicitly represent the temporal dynamics of a system, every
component’s state is made explicit and its temporal change is then captured by
a functional dependency on the values from the previous time steps. Temporal
relationships are depicted with dotted arrows, e.g., in figure 3 three dotted
arrows point to state clog which means that the current state of the pipe
being clogged depends on the state’s value and two inputs (pressure and

11

emission) from the previous time step.

Once the transfer-function diagram is complete, its components are mapped
to GLL statements [26]. Since a GLL program represents classes of proba-
bilistic models, switching to GLL statements provides the modeling system
with additional power for capturing dynamic processes. The recursive rules of
GLL, for instance, lend themselves nicely to representing potentially infinite
structures where some variables have a self-dependency over time. In the next
section, we describe this mapping to GLL rules in more detail.

Once a domain expert has specified every system component within a transfer-
function diagram, the diagram is converted into a GLL program for further
inferencing according to the following mapping:

1. Each function of every component in the diagram is mapped into a GLL
sentence as shown in figure 4. Inputs and outputs of a function correspond

Fig. 4. Mapping of a transfer function into a GLL rule.

to random variables in GLL. Note that N stands for the current time step
of the system, thus function Fi has an instant effect, that is, its input and
output values are isochronous. Additionally, D(Fi) stands for the probability
distribution corresponding to function Fi, provided by an expert.

2. Each state of every component in the diagram is mapped into a GLL rule
according to figure 5. Note that temporal influences on the state are easily

Fig. 5. Mapping of a component’s state into a GLL rule.

described by a recursive GLL rule. We use D(Si) to denote the probability
distribution corresponding to the function representing the temporal change
of state Si.

3. Connections between components are included in the corresponding GLL
program according to figure 6. When the output Oi of component Ci is taken as

Fig. 6. Mapping connections between components into a GLL program.

12

an input Ij to component Cj at the same time step, we replace Oi(N) with Ij(N)
in the rule representing the function of Ci producing Oi. Otherwise, when the
output is taken as an input at the next time step, we replace corresponding
Oi(N) with Ij(N + 1). Recursive rules of GLL support capturing the time change
in the system in a natural way.

During the mapping of the transfer-function diagram into a GLL program,
the deterministic function, specified by a domain expert as the matrix (D(Fi)
of figure 4), is transformed into a probability distribution table with zeros
and ones. Moreover, the noise and the rate of change can be simulated by
adding a probabilistic bias to the deterministic function during this mapping.
It is possible in GLL to omit specification of a probability distribution of
a sentence by marking it as learnable. The GLL system uses an EM-based
learning mechanism to infer this distribution from data. By using functions
taken from experts’ knowledge as an initial approximation of the system (prior
knowledge) and then utilizing the learning capabilities of GLL, the model of
the system is further refined to closer represent the domain. Transfer-function
diagrams mapped into probabilistic graphical models are the initial determin-
istic patterns of contextual models that are further refined and evolved during
context-sensitive probabilistic modeling.

Fig. 7. The general transfer function diagram of the pump system.

In the pump system example, the transfer function diagram (figure 7) is
mapped into a GLL program:

voltage<-{low,avg,hi}

torque<-{low,hi}

..snip..

voltage(N+1)|resistance(N)=[[0.099,0.9,0.001],[0.99,0.009,0.001]]

resistance(N)|torque(N),in-pressure(N)=Learn

..snip..

13

3.3 Failure-Driven Approach to Context-Sensitive Modeling

To summarize, COSMOS is a probabilistic modeling system which addresses a
context-sensitive modeling problem for real-time tasks. The idea of our system
is to use a set of small relevant models instead of a single large network to
address the computational complexity issue while maintaining or improving
the modeling accuracy. By splitting the domain into contexts we are able to
construct small models with reduced complexity that capture only the relevant
relationships that are currently present in the data. Whenever a knowledge
base changes, the learned model is not discarded as in batch processing, but
stored for future use. The set of small models captures the different opera-
tional contexts of an environment, where each context represents local sta-
tionary behavior in the data. Combining these models together by invoking
an appropriate model depending on changes in the context provides a means
for handling global non-stationary behavior in the data. Consequently, our
system attempts to maintain context awareness by incrementally monitoring
data changes, dynamically switching currently active models as the context
changes.

3.3.1 The notion of context in probabilistic modeling

We next define the notion of context. Similar to a linguistic context, in prob-
abilistic reasoning a context helps to identify relevance and situational ap-
propriateness of a model. We use probabilistic graphical models [23] as suit-
able representations for a model encoding selected features of knowledge and
beliefs about a domain. We assume a universal set of variables V and the
model is defined on its subset U ⊆ V. We follow Halpern and Pearl [9]
by distinguishing endogenous variables and exogenous variables. Endogenous
variables of a model M are the variables on which the model is defined:
En(M) ≡ U. All the variables that are not in M are called exogenous vari-
ables: Ex(M) ≡ V − En(M).

A logical conjunction of truth assignments to some exogenous variables of
a model M is called a context C of M. To extend this definition we can use
variable assertions instead of truth assignments. We create contexts to capture
some stable invariant subset of behaviors of the specified set of exogenous
variables of a model: assuming the model fits a data set well, its context
logically holds under the available data.

The idea of context-sensitive probabilistic modeling is to partition a continu-
ous data stream into contexts (regions of contextual invariance) and to build
a collection of small models, each of which represents a specific context. Every
time we encounter a new context (or periodically return to the previous con-

14

text), the correponding model is envoked to reason under specific contextual
conditions.

We next describe a multiple function estimation problem in an environment of
changing situations. This is a multidimensional optimization problem: find an
optimal collection of probabilistic models that represent a system in particular
situations (contexts) accurately and efficiently. The collection of contexts may
not be known a priori, therefore we have to find an optimal set of contexts
to improve function estimation. Two properties of the set of contexts are
accounted for when we search for optimal contexts: (a) context stability and
(b) a rate of change of contexts. These properties reflect the belief that a
context represents invariant behavior in an environment.

Let D represent a set of observed data. It is natural to assume that the data
set is ordered, D = {d1,d2, . . . ,dm}, where each di, i ≤ m, is a vector of
observations recorded at the ith time step for each observable variable of the
system. Therefore, we can define a function s(), which returns the successive
data vector: for each i < m, s(di) = di+1.

The optimal collection of contexts is found by minimizing the error corre-
sponding to how much each context from the set agrees with associated data
as well as how many context transitions are present. Consider a collection of
contexts H = {C1, ..., Ck}. Each context Ci represents observed invariant be-
havior in some data set Di. Therefore, our set of contexts H corresponds to
some ρ(D), a partition of D into k mutually exclusive subsets D1, . . . ,Dk.
Note that each Di might consist of a set of disjoint data regions instead of a
single continous region (see figure 8). The data partition ρ(D) corresponding
to our set of contexts H has an error score associated with it

error(ρ(D)) =
k∑

j=1

[error′j(ρ(D)) + error′′j (ρ(D))],

where

error′j(ρ(D)) = Prx∈Dj
[Cj(x) = false],

error′′j (ρ(D)) = Prx∈Dj
[Cj(s(x)) = false | Cj(x) = true].

Here Cj(x) is an instantiation of context Cj on a data vector x. 1 Informally,
score error′j(ρ(D)) indicates the error rate we expect when applying Cj to
instances drawn according to the probability distribution Dj. It captures how
much context Cj disagrees with data set Dj from data partition ρ(D). Given
a successful application of Cj to an instance, score error′′j (ρ(D)) indicates the

1 The notation Prx∈Dj
indicates that the probability is taken over the instance

distribution Dj .

15

expected error rate when applying Cj to the next instance. Note that when
error′j(ρ(D)) is minimal, error′′j (ρ(D)) denotes the amount of instability (con-
text changes) in the system’s behavior described by context Cj and sampled
with data Dj. Figure 8 illustrates two data partitions corresponding to a set
of two contexts. Note that error′′j (ρ(D)) is higher for the first partition, see
figure 8 (a), than for the second one, since there are less context transitions
in (b). On the other hand, error′j(ρ(D)) is higher for the second partition,
since there are more data that disagree with contexts. Minimizing these er-

Fig. 8. Illustration of context partitioning.

rors, error(ρ(D)), over all data partitions yields an error score Score1(H)
for a given collection of contexts H. Consequently, the optimal collection of
contexts that represents the stable invariant behavior with the smallest num-
ber of context changes is found by minimizing the corresponding error score
Score1(H) along every possible set of contexts. One can see that the prob-
lem of finding an optimal collection of contexts is similar to the problem of
clustering the data according to some stable contiguous patterns.

Recall that each element C from H is a context of some model M: there is a
connection between M and C. We view context C as a condition that constrains

(structurally and parametrically) the set of all possible models associated with
the context. In other words, C constrains Θ, the parameters of M, and G, the
structure of M.

Reducing the number of context transitions is important since each time the
context changes we need to replace a model corresponding to the previous
context with the one that corresponds best to the new context, and this model
substitution could be computationally expensive. On the other hand, each
model must represent a context (data) most accurately, and in the same time
should be as small as possible to reduce the cost of inference. Therefore, while
minimizing Score1(H) we maximize the probability for each C ∈ H:

max
C∈H

[Pr(Gc | D)] ∝ max
C∈H

[Pr(Gc)Pr(D | Gc)].

The prior Pr(Gc) reflects our belief before seeing any data that the structure
Gc imposed by the context C is correct. Simultaneously, we minimize the
structural complexity of a model to ensure that the structure of models is

16

parsimonious:

min
C∈H

[size(Gc) + max
V ∈Gc

[degree(V)]].

Here size(Gc) stands for a number of edges in Gc, and degree(V) denotes the
number of other vertices connected to V by edges (minimizing fan-in/fan-out).
Note that if the complexity of a model is not decreased by constraints of the
corresponding context, then the entire optimization problem described above
can be reduced to a traditional structure search and the parameter estimation
for a single model.

Modeling systems that address the context-sensitive probabilistic modeling
problem are very important for carrying out complex tasks imposing additional
constraints on the running time and memory of the modeling systems. We next
describe our failure-driven probabilistic modeling that incorporates ideas from
developmental learning [25] to model data from dynamic environments.

3.3.2 Model failure: an indicator of context change

Our approach to the probabilistic modeling of changing contexts is based on
ideas from developmental learning [25]. We argue that probabilistic inference
systems can benefit greatly by emulating these mechanisms. In our psycholog-
ically inspired framework for learning, models become more tractable. Most
new evidence is rapidly “assimilated” into existing small contextual models by
updating their parameters, similar to an individual incorporating new events
and objects into an existing way of thinking. Data sets that exhibit large scale
deviations from previously learned models bring the more expensive “accom-
modation” mechanism into play that reorganizes the model to accommodate
new data, similar to an individual reorganizing his/her existing mental struc-
tures to incorporate new information about novel aspects of an environment.

Context switching mechanisms, which are among the main components of our
system, employ these two forms of learning within a failure-driven architecture

(see figure 9). When new data are available, the system checks whether the

Fig. 9. The flow chart of the failure-driven architecture.

current model fits the dataset well. If it does, the data are incorporated into the
model by updating its probability distribution (this is learning by assimilation:
the model is consistent with new data and it is fine-tuned by assimilating the

17

dataset). Otherwise, if the model fails to fit the data, the system saves the
current model and searches for a new version that will account for the new data
(this is learning by accommodation: the model is inconsistent with new data,
hence in order to account for the dataset the model has to be reorganized).

Failure detection is the core of the architecture (see the conditional “Model

fit?” in figure 9). Assuming a continuous stream of data, the notion of fail-
ure represents the situation when new data are inconsistent with the current
model. Essentially, model failure can be identified by estimating the likelihood
of the data given the current model: the model fails when this likelihood is
below a certain threshold.

The problem of identifying model failure is a special case of a statistical prob-
lem of detecting the distribution change from a stream of observations [27].
There are a number of approaches to this problem [2,32,34]. We provide a
method that fits naturally into the iterative framework of our context-sensitive
probabilistic modeling system.

The idea of the algorithm is to monitor a selected subset of model parameters
(triggers) and declare model failure when the true parameters of the model
are considerably different than these estimated from new data. The algorithm
iteratively checks for failure in the specified data window and, if no break-
down is detected, slides the data window further along the data stream. Note
that our failure detection is controlled by the size of the data window, the size
of the window shift, and the threshold indicating model failure. In general the
problem of finding the appropriate window and threshold parameters can be
seen as an error minimization problem. Ultimately, we would like to find the
parameters that would minimize false positive and false negative errors.

Minimizing false positive error is relatively easy: we partition the training
dataset into two subsets, use the first subset to train the model, and em-
ploy the second subset to determine window parameters such that the failure
detector finds no failure on the second subset. Note that if we have a third
training dataset on which the algorithm is expected to find failure, we can
perform a similar routine minimizing false negative error to further constrain
the parameter set.

Preliminary testing of the algorithm across various window and overlap sizes
shows that failure detection becomes more sensitive to data noise when the
window size is small, which results in a higher likelihood of a false positive
error. Larger windows lead to less sensitive failure detection along with a
detection lag, when model failure is only identified after the break-down has
occured. Additionally, larger windows demand more computational power.

In general, without an appropriate data set, minimizing a false negative error
is a challenging problem. The problem becomes even more difficult when the

18

difference between two very similar distributions must trigger model failure. A
possible way of selecting the window/threshold parameters without a training
set for failure detection is to employ data variance. Intuitively, we would like
to know the size of a representative subset of the training data and a data
window, the variance of which is close to the true variance of the training data.
A steep change in variance of such a data window would be a good indicator
that the data came from a new distribution. Consider a window with size K

and draw N subsets of data by randomly sliding the window along the training
dataset. Computing an average variance over N data subsets for a large enough
N produces an estimate of our confidence that a window of K elements drawn
from the training dataset captures the underlying dependencies observed in
the entire training dataset.

Testing using the data from the pump system shows that at some moment
error bars of the variance monotonically decrease as the window size increases:
the more data we take, the less changes in the data variation we get. We can
automatically select the window as soon as the error bars drop below a certain
level as the window size increases.

Once the window size is set, the failure threshold is found by computing an
average difference (the Frobenius norm 2) between a true model parameter
and its estimate computed from the window of the training data. Essentially,
we can execute the failure detection algorithm using the window of training
data and employ the computed difference as the failure threshold.

To illustrate the failure detection method we use temporal data obtained from
a variety of sensors installed on the mechanical pump system of Section 1.
These sensory data consists of a time series of three parameters: pressure
coming into a pump (InPr), pressure generated by the pump (OutPr), and
voltage at the motor driving the pump (Volt). In order to estimate the behavior
of the pump system depending on how clogged the filter is, we control the valve
regulating the amount of fluid coming into the pump (as opposed to literally
contaminating the system). During the experiment the pump system starts
normal operation with the valve fully open. As the time passes a certain point
(around the 53d time step), we partially close the valve to limit the flow of
the fluid coming into the pump. A series of 100 data steps is recorded during
the experiment. Each signal is then smoothed using a sliding window approach
and digitized. Figure 10(a) illustrates the time series of one of the paprameters
(OutPr) of the pump system.

We selected 35 first time steps to train a DBN, each time slice of which contains
2 hidden variables (resistance at the pump, Resist, and torque of the motor,
Torque) and 3 observable variables (InPr, OutPr, Volt). The appropriate size

2 A Frobenius norm of a matrix A = (aij)kl is defined as ‖A‖F =
∑k

i=1

∑l
j=1

|aij |
2.

19

 0 20 40 60 80 100

Time

Original
Smoothed

 0 20 40 60 80 100

Time

Digitized

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 40 50 60 70 80 90

13121110987654321

P
a

ra
m

e
te

r
c
h

a
n

g
e

Time

Volt
Resist

Torque

(b)

Fig. 10. (a) The time series of the pressure generated by the pump (OutPr) and
its smoothed and digitized versions. (b) Failure detection using a 17 point wide
sliding window and 12 point overlaps performed on the model trained on data from
the pump system. Each horizonatal line corresponds to a failure threshold: once
a corresponding change of a distribution (a difference between true and learned
model parameters) goes above this threshold, the failure detector signals a model
break-down. The grid corresponds to window shifts.

of training data (35 time steps) was identified by leave-one-out cross-validation
across models trained on data sets of various sizes.

Figure 10(b) illustrates the performance of the failure detector on the sensory
pump data for the trained model (plotted for three model parameters: motor
voltage (Volt), pump resistance (Resist), and motor torque (Torque)). The
window size (17 data points) and shift (5 data points) as well as the thresholds
linked with each model parameter were automatically identified using the
method described above.

Recall that the real model break-down happens around time step 54, when the
valve of the pump system is partially closed. By monitoring parameter Resist

the failure can be identified soon – at step 59 (after 4 window shifts), where as
by monitoring parameters Volt and Torque the failure is idetified much later
(at around step 69).

In order to avoid incurring costs of detecting failure across a large model,
we specify a small subset of trigger parameters, whose changes have been
identified as most important by the domain experts and are often indicative
of model failure. Instead of checking for failure in the entire model, only the set
of trigger parameters is monitored. Full-fledged failure detection is enforced
once a change in a trigger parameter is discovered. Since different parameters
give different detecting performance, it can be useful to employ a combination
of these. A two-layerd failure detection can also be used, where a parameter
that is prone to data noise but useful in detecting early failure, like Resist in
figure 10(b), can trigger an alert mode, in which case a more stable parameter,
such as Voltage, is analyzed to confirm the detected model break-down. Further
details on failure detection can be found elsewhere [2,32,34].

20

3.4 Putting It All Together: COSMOS

COSMOS employs context to reduce the number of stochastic relationships
necessary to represent dynamic change. COSMOS ultimately reduces the com-
plexity of probabilistic models by switching between tuned-up, knowledge-
focussed models as necessary to represent changing contexts, using the failure-
driven iterative approach described in the previous section.

The multi-layer architecture of COSMOS consists of an ensemble of related
probabilistic models, a representation of contextual states, and a mechanism
for switching between active models based on detected context changes. It
also uses a deterministic domain knowledge to manage the adaptation of in-
dividual models to context changes. COSMOS incorporates an incremental
failure-driven mechanism for learning and repair based on abductive causal
reasoning and EM parametric learning that together generate new models
better adapted to handle behavior in changing environments.

Fig. 11. A diagram of the relationship between domain knowledge, contexts, and
models in the COSMOS hyper-model.

A key component of COSMOS is the ensemble of contextual models consisting
of a context graph linked with a model graph (figure 11). The context graph
represents what we want to learn (the concrete situation), where the model
graph is its approximation, and where some contexts or transitions have not
yet been encountered (figure 11). The ensemble of contextual models is rep-
resented as a finite state machine where contexts correspond to states and
transitions between contexts correspond to transitions between states. Con-
text transitions, the edges in the graph, are managed by a domain knowledge
base (the COSMOS’ top layer). Note that each context, a node in the con-
text graph, is associated with a graphical model comprising COSMOS’ lowest
layer. The system incrementally populates the ensemple of models by iterating
between an assimilation step for model tuning and an accommodation step for
model repair and reorganization (see figure 9).

Initialization. The incremental process starts with an initial ensemble of ex-
pected operational contexts with transitions and corresponding models spec-
ified by the domain expert. Transfer-function diagrams provide an interface
for model specification. The models are then trained on given datasets for

21

individual contexts using loopy belief propagation for inferencing. Finally, the
expert selects an initially active model from the library to begin.

Assimilation. Once initialized, the system considers newly encountered data
and checks whether the currently active model fits the data. Using our failure
detection algorithm based on the learning mechanism of GLL, a steep change
between actual and estimated parameters indicates model failure. COSMOS
moves into the accommodation step (next) when model failure is detected,
otherwise the system inferences across the model and outputs whatever diag-
nostic information the user requests.

Accommodation. Once model failure is detected, the system identifies every
model parameter (endogenous variable) that is unstable. A domain knowl-
edge base specified by Horn-clause rules is used to detect exogenous variables
that can cause model changes. We backtrack along the rules to “explain” the
changes in the endogenous variables. As a result, this abduction mechanism
produces a model that corresponds to the new context. In general, abduction
can produce multiple possible explanations (assertions to exogenous variables)
of the model failure, identifying a neighborhood of possible context transitions.
COSMOS traverses the models linked to the contexts from the neighborhood
to find the one that best fits the data. Once the model is found, the system
shifts back to the assimilation step. If no appropriate model is found, COS-
MOS expands the library by building a new contextual model. We believe this
structure search can be significantly reduced by using contexts constrained by
domain knowledge.

The context-sensitive probabilistic modeling system is an attempt to maintain
situation awareness over time. Partitioning the world on context makes the
cost of detecting context changes (estimating the target variables) much lower
due to the small size of corresponding models. On the other hand, context sta-
bility reduces the amount of potentially expensive context estimations (those
that require searching for an appropriate model in the ensemble).

4 Evaluation of context change and model sensitivity

In this section we consider data from the pump system presented in Section 1.
The model whose structure is given in figure 12 is trained on the data corre-
sponding to the normal operational context of the pump system. We describe
our results through a set of experiments that test the detection of context
changes and demonstrate switching to an appropriate model.

Experiment 1. During the pump system operation, the valve is partially closed
to simulate a clogged filter. Figure 13(a) shows the difference between the true

22

Fig. 12. A DBN corresponding to the GLL program given in section 3.2. Solid ar-
rows correspond to isochronal dependencies, while dashed arrows represent temporal
dependencies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 20 30 40 50 60 70 80 90

Off

P
a
ra

m
e
te

r
c
h

a
n

g
e

Time

Volt
Resist

Torque

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 20 30 40 50 60 70 80 90

Off

P
a
ra

m
e
te

r
c
h

a
n

g
e

Time

Volt
Resist

Torque

(b)

Fig. 13. Failure detection on three model parameters (Volt, Resist, Torque) in the
data stream when the pump system initially operates normally, but then changes
behavior at the 48th time step, when the flow valve is partially closed. Figure (a)
shows predictions performed using a sliding window of 17 points with 12 point
overlaps, whereas figure (b) illustrates these predictions when the sliding window
is 15 points wide with 10 point overlaps. The vertical line Off shows an actual
system break down, while horizontal lines correspond to failure thresholds for the
corresponding model parameters (same font type). Figure (a) shows that using
Resist the context change is detected at the 55th step, using Torque the change is
detected at the 60th step, and using Volt the change is detected at the 65th step.
Figure (b) shows that the context change is falsely detected at the 25th time step.

and the estimated parameters Resist, Torque, and Voltage computed over a
sliding window. It can be seen that COSMOS identifies the context transition
between the 55th and the 65th time step depending on which parameter is
used. However, the real context transition occurs at the 48th time step, when
the valve is partially closed. In an attempt to capture the context transition
earlier, we reduced the size of the window. Figure 13(b) shows that COSMOS
prematurely detects a context change at the 25th step.

Experiment 2. In this experiment, the pump system starts operating normally,
then the valve is partially closed, simulating a highly clogged state of the
filter. The valve is then opened and the pump system returns to its normal
state of operation. We try to fit several different models representing various
operational contexts. Figure 14(a) illustrates the difference between the true

23

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16 18

OnOff

P
a

ra
m

e
te

r
c
h

a
n

g
e

Time (window shifts)

Norm
Clog
Misal
Tooth

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16 18

OnOff

P
a

ra
m

e
te

r
c
h

a
n

g
e

Time (window shifts)

Norm
Clog
Misal
Tooth

(b)

Fig. 14. An illustration of an experiment when the pump system starts operating
normally and the valve is partially closed (at the Off time step), which is then re-
opened (at the On time step). The detection of context changes is performed using
a sliding window of 21 points with 14 point overlap. Vertical lines Off and On show
moments of time when the valve was closed and then reopened. Horizontal lines
correspond to failure detection thresholds for the corresponding model parameters.
Figure (a) shows the difference between the true Voltage parameter and the param-
eter estimated on the sliding window for various models: a model (Norm) trained
on data from regular conditions, a model (Clog) corresponding to a partially closed
flow valve, a model (Misal) representing the data when the pump is misaligned, and
a model (Tooth) capturing the situation when a gear tooth is chipped. Figure (b)
shows the same information for the In Pressure parameter.

Voltage parameter and its estimation using a 21 point wide window. After
each estimation the window is shifted 14 points further constructing the time
series of parameter changes. Plotting these time series for different models,
we can see that the model Norm represents the initial normal operation of
the pump system better than any other model. When the context changes to
high clogging, the model Clog best represents the changed context. Figure 14(b)
shows the same analysis using the parameter In Pressure. Note that two “hills”
after each context change correspond to the periods of disequilibrium in the
physical pump system: when the valve is partially closed, the motor over-
compensates for the change at first, but then returns to the optimal state.

Experiment 3. The pump system starts operating with one gear having a
chipped tooth. Figure 15(a) illustrates the difference between the true and the
estimated parameter Voltage computed on a sliding window for various models.
Figure 15(a) shows that the model Tooth represents the current context better
than other models, though the behavior of the model Misal is close to that of
Tooth. Figure 15(b) shows the same analysis for the parameter In Pressure.

Experiment 4. We next evaluate the performance of COSMOS, where we ex-
pect smaller models to be more accurate than larger models trained on larger
data sets. We trained two contextual models of COSMOS on the training
data sets corresponding to two contexts (context 1 and 2). COSMOS mod-
els are then compared to a structurally similar model trained on a data set

24

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6

P
a

ra
m

e
te

r
c
h

a
n

g
e

Time (window shifts)

Norm
Clog
Misal
Tooth

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6

P
a

ra
m

e
te

r
c
h

a
n

g
e

Time (window shifts)

Norm
Clog
Misal
Tooth

(b)

Fig. 15. An illustration of the experiment when the pump system starts operating
with a gear having a broken tooth. The figure shows the same information as in
figure 14. Figure (a) shows the analysis for the Voltage parameter whereas figure
(b) the In Pressure parameter.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 34 36 38 40 42 44 46 48 50 52

L
2

 d
is

ta
n

c
e

Time

M1
M2

COSMOS

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 88 90 92 94 96 98 100

L
2

 d
is

ta
n

c
e

Time

M1
M2

COSMOS

(b)

Fig. 16. A plot of L2 distance between model predictions and data demonstrating
the extrapolation performance (a) in context 1 and (b) in context 2. In (a) the data
is noisy during the 35-45 time interval and noise is reduced after the 45th time
step. COSMOS switches to model MC1, whilem in (b) COSMOS switches to model
MC2.

combined from both contexts. The contextual models are also compared to
another structurally more complex model trained on the combined data set.
Figure 16(a) shows extrapolation in context 1 and figure 16(b) shows extrap-
olation in context 2.

Note that COSMOS and the two models perform similarly when the data is
noisy (context 1), however COSMOS outperforms the other models as the
data noise decreases (the end of context 1 as well as of context 2). The models
trained on combined data overfit that data; this is further supported by the
information in Table 1. Leave-one-out cross-validation is performed on the
training data set for Context 1 and Context 2, see Table 1.

In order to illustrate the running time complexity of COSMOS, we compared
the number of iterations needed to converge for COSMOS (on average) as well
as for the two large models. The iterations are given in Table 2. Note that
COSMOS models on average require fewer iterations to convergence because

25

these models are smaller and more focused. Table 3 shows the average number
of iterations the learning algorithm took to converge during the leave-one-out
cross-validation.

Model Context 1 (Var) Context 2 (Var)

M1 0.13546 (0.027373) 0.10175 (0.043229)

M2 0.14649 (0.029093) 0.091425 (0.046431)

COSMOS 0.13340 (0.045253) 0.091472 (0.049549)

Table 1
The average difference (L2 distance) calculated during leave-one-out cross-
validation. The distance is computed between predicted values and noisy data.

Model M1 M2 COSMOS

Iterations 97 100 47

Table 2
The number of iterations of the parameter estimation algorithm before convergence.
The models are trained using an EM-based algorithm implemented with loopy belief
propagation.

Model Context 1 Context 2

M1 99 95

M2 99 98

COSMOS 63 57

Table 3
The average number of iterations required during each iteration of leave-one-out
cross-validation.

5 Conclusions and Future Directions

In this paper we described COSMOS, a system for context-sensitive prob-
abilistic modeling. This system uses transfer-function diagrams to capture
organizational, hierarchical, and representational constraints in system com-
ponents. COSMOS handles the complexity issues found in modeling dynamic
environments by focusing on only relevant parts of the environment. Since
each context represents some stable, invariant behavior over a time period,
it can be represented by a considerably smaller model, focused on this rele-
vant knowledge. Such knowledge-focused models provide accurate results for a
specific context, yet require less training information. COSMOS models non-
stationary behavior of the dynamic environment by sequentially applying con-
textual models which represent subsets of stable behavior.

26

Although represented by a stochastic model, a context, as currently defined,
can change only deterministically (represented as a finite state machine in
section 3.4). Extending the definition of context to allow stochastic context
transitions (replacing a finite state machine with a probabilistic one) will po-
tentially increase the reasoning power of COSMOS. This extension is linked to
the general direction of developing more robust domain knowledge represen-
tations. Other directions for future research include extending the mechanism
for detecting context transition events, for example, choosing trigger variables,
combining various sliding windows, etc.

6 Acknowledgements

The research presented in this paper is part of the PhD dissertation of the
first author under the supervision of the second. We thank Carl Stern from
Management Sciences, Inc. and Roshan Rammohan for support and numerous
discussions. We also acknowledge the help of Tom Caudell and Lance Williams,
who served on this PhD committee. The first author was supported by the
Air Force Research Laboratory SBIR contract (FA8750-06-C0016).

References

[1] J. Barwise, Conditionals and Conditional Information, On Conditionals (1986)
21–54.

[2] S. Dayanik, C. Goulding, H. V. Poor, Joint Detection and Identification of an
Unobservable Change in the Distribution of a Random Sequence, Information
Sciences and Systems (2007) 68–73Issue of 41st Annual Conference on Volume.

[3] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, Journal of the Royal Statistical Society, Series B
(Methodological) 39 (1) (1977) 1–38.

[4] N. Friedman, L. Getoor, D. Koller, A. Pfeffer, Learning Probabilistic Relational
Models, 1999, pp. 1300–1307, proc. of 16th Intl. Joint Conf. on AI (IJCAI).

[5] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, Learning Probabilistic Relational
Models, Relational Data Mining (2001) 307–335.

[6] A. Gopnik, C. Glymour, D. M. Sobel, L. E. Schulz, T. Kushnir, D. Danks, A
theory of causal learning in children: Causal maps and Bayes nets, Psychological
Review 111 (1) (2004) 3–32.

[7] N. Granott, K. W. Fischer, J. Parziale, Bridging to the unknown: a transition
mechanism in learning and development, Microdevelopment: transition
processes in development and learning.

27

[8] P. Haddawy, Generating Bayesian Networks from Probability Logic Knowledge
Bases, Morgan Kaufmann, 1994, pp. 262–269, proc. of 10th Conf. on
Uncertainty in AI.

[9] J. Halpern, J. Pearl, Causes and Explanations: A Structural-Model Approach
— Part 1: Causes, San Francisco, CA: Morgan Kaufmann, 2001, pp. 194–202,
proc. of 17th Conf. on Uncertainty in AI (UAI-01).

[10] D. Jensen, J. Neville, Schemas and Models, 2002, pp. 56–70, proceedings of
the First SIGKDD Workshop on Multi-Relational Data Mining (MRDM-2002),
University of Alberta, Edmonton, Canada.

[11] K. Kersting, L. DeRaedt, Bayesian Logic Programs, 2000, pp. 138–155, proc.
of 10th Int. Conf. on ILP.

[12] K. Kersting, L. DeRaedt, Basic Principles of Learning Bayesian Logic Programs,
Tech. Rep. 00174, albert-Ludwigs University at Freiburg (2002).

[13] D. Koller, A. Pfeffer, Object-Oriented Bayesian Networks, 1997, pp. 302–313,
proc. of the 13th Conf. on UAI.

[14] H. Langseth, O. Bangso, Parameter Learning in Object-Oriented Bayesian
Networks, Annals of Mathematics and Artificial Intelligence 32 (1–4) (2001)
221–243.

[15] K. Laskey, S. Mahoney, Network Fragments: Representing Knowledge for
Constructing Probabilistic Models, 1997, pp. 334–340, proc. of the 13th Conf.
on UAI.

[16] G. F. Luger, Artificial intelligence: Structures and Strategies for Complex
Problem Solving, Addison-Wesley, 2009.

[17] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, An introduction to
kernel-based learning algorithms, IEEE Transactions on Neural Networks 12 (2)
(2001) 181–201.

[18] K. P. Murphy, Y. Weiss, M. Jordan, Loopy Belief Propagation for Approximate
Inference: An Empirical Study, in: Uncertainty in Artificial Intelligence, 1999,
pp. 467–475.

[19] L. Ngo, P. Haddawy, Answering queries from context-sensitive probabilistic
knowledge bases, Theoretical Computer Science 171 (1–2) (1997) 147–177.

[20] L. Ngo, P. Haddawy, R. A. Krieger, J. Helwig, Efficient Temporal Probabilistic
Reasoning via Context-Sensitive Model Construction, Computers in Biology
and Medicine 27 (5) (1997) 453–476.

[21] N. J. Nilsson, Teleo-Reactive Programs and the Triple-Tower Architecture,
Electronic Transactions on Artificial Intelligence 5 (2001) 99–110.

[22] F. V. J. O. Bangsø, J. Flores, Plug and play object oriented Bayesian networks,
LNAI 3040, 2004, pp. 457–467, proc. of the 10th Conf. of the Spanish Assoc.
for AI.

28

[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, 1988.

[24] J. Pearl, Causality: Models, Reasoning, and Inference, Cambridge University
Press, 2000.

[25] J. Piaget, Piaget’s theory, Handbook of Child Psychology 1.

[26] D. J. Pless, C. Chakrabarti, R. Rammohan, G. F. Luger, The Design and
Testing of a First-Order Stochastic Modeling Language, International Journal
on Artificial Intelligence Tools 15 (6) (2006) 979–1005.

[27] M. Pollak, Optimal Detection of a Change in Distribution, The Annals of
Statistics 13 (1) (1985) 206–227.

[28] D. Poole, Logic Programming, Abduction and Probability: a top-down anytime
algorithm for estimating prior and posterior probabilities, New Generation
Computing 11 (3–4) (1993) 377–400.

[29] M. Richardson, P. Domingos, Markov Logic Networks, Machine Learning 62 (1–
2) (2006) 107–136.

[30] M. J. Sanscartier, E. Neufeld, Identifying Hidden Variables from Context-
Specific Independencies, AAAI Press, 2007, pp. 472–477, proceedings of
FLAIRS-07 Conference.

[31] D. L. Silver, R. Poirier, Context-Sensitive MTL Networks for Machine
Lifelong Learning, AAAI Press, 2007, pp. 628–633, proceedings of FLAIRS-07
Conference.

[32] X. Song, M. Wu, C. Jermaine, S. Ranka, Statistical Change Detection for Multi-
Dimensional Data, 2007, pp. 667–676, proceedings of the 13th Intnl. Conf. on
Knowledge Discovery and Data Mining (KDD’07).

[33] S. Srinivas, Modeling techniques and algorithms for probabilistic model-based
diagnosis and repair, Ph.D. thesis, KSL, CS Dept., Stanford University (1995).

[34] M. Steyvers, S. Brown, Prediction and Change Detection, Advances in Neural
Information Processing Systems 18 (2006) 1281–1288.

[35] S. Thrun, Lifelong learning: A case study, Tech. Rep. CMU-CS-95-208, cS
Dept., Carnegie Mellon University (1995).

[36] P. Turney, The Identification of Context-Sensitive Features: A Formal Definition
of Context for Concept Learning, 1996, pp. 53–59, proceedings of Workshop on
Learning in Context-Sensitive Domains at the 13th ICML.

[37] T. A. van Dijk, Discourse, context and cognition, Discourse Studies 8 (1) (2006)
159–177.

29

